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The resistance to oscillatory motions of arbitrary wavelengths in an infinitely dilute 
lattice of identical spheres, immersed in a viscous fluid, is calculated from the 
linearized Naviel-Stokes equation to lowest order in fluid inertia and sphere-volume 
fraction. The application we have in mind is to analyse the hydrodynamic modes in 
colloidal crystals (a lattice of Brownian particles repelling each other electrically), 
although other applications are possible. We find that’the friction per particle for both 
compressional and transverse shear modes is close to the Stokes value at short 
wavelengths, whereas at long wavelengths fluid backflow within the lattice is 
important and causes the friction to increase for compressional modes. For shear 
modes, in which backflow is not present, the friction decreases from the Stokes value 
at short wavelengths to zero at long wavelengths. At sufficiently long wavelengths, 
when the shear-mode friction becomes small enough, propagating viscoelastic modes 
are possible in a lattice with elastic forces between spheres. Fluid inertia is most 
important for long-wavelength transverse motions, since a significant amount of fluid 
mass gets carried along by each particle. Explicit results for a bcc lattice are presented 
along with interpolation formulas, and the pertinence of these results to colloidal 
crystals is discussed. Finally, the effects of constraining walls are explored by 
considering a one-dimensional lattice near a wall. Backflow imposed by the wall 
increases the friction factors for the lattice modes, showing that propagating modes 
are unlikely in colloidal crystals that are confined to a cell thinner than a critical 
length. 

1. Background: colloidal crystals 
It has been shown recently that the lattice ciynamics of colloidal crystals, which 

consist of strongly repelling charged Brownian particles arranged in a lattice, can be 
described by a harmonic lattice immersed in a viscous medium (Hurd 1981; Hurd 
et al. 1982). A hydrodynamic interaction between the particles arises when the moving 
particles exchange momentum through the viscous fluid, thereby changing the 
resistance to particle motion. This effect is of crucial importance to the sedimentation 
and rheology of concentrated dispersions of colloidal-size particles, but has generally 
been regarded as being small enough to neglect for the dynamics of sufficiently dilute 
colloidal systems. Of course, the complexity of the problem has encouraged this 
neglect. If is difficult to say, for example, when the particle concentration is 
‘sufficiently dilute ’, especially since the hydrodynamic interaction depends on the 
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configuration of the particles, but in general the greater the configurational order the 
greater the importance of the interaction. In  this paper, we will discuss highly ordered 
configurations, such as those found in dilute colloidal crystals, as a special case for 
which results can be readily obtained. 

There are two reasons why the hydrodynamic interaction is more important in a 
lattice of Brownian particles than in dilute suspensions. First, the Stokes velocity 
field created by a moving sphere in a fluid decays only as r-l ,  and, when the effects 
of many particles are summed, the local fluid velocity in the neighbourhood of a sphere 
has significant contributions from not just the nearest-neighbour particles, but from 
particles a t  all distances as well. The second reason is much more surprising: the 
regular arrangement of spheres in a lattice causes the hydrodynamic effects to enter 
at  order @, where qi is the volume fraction of the spheres, instead of order q5 as in 
a random-free arrangement. This point has been noticed in the sedimentation 
problem for arrays of spheres, and is related to the existence of a well-defined spatial 
correlation length in a given configuration (Saffman 1973). Hence ‘sufficient dilution’ 
at  which hydrodynamic interactions become negligible for an ordered suspension is 
three orders of magnitude more dilute than for disordered suspensions. 

Experimentally, the dynamical response of colloidal crystals has been studied in 
a number of ways. Thermally excited compressional, or longitudinal, modes in the 
lattice have been found to be overdamped by dynamic light scattering, whereas shear, 
or transverse, modes have exhibited overdamped behaviour at short wavelengths 
and, in thin-film cells, overdamped behaviour at long wavelengths as well (Hurd 1981 ; 
Hurd et al. 1982). In  containers of larger dimensions, however, transverse modes can 
be underdamped as shown by a variety of mechanical measurements (Pieranski et 
al. 1981 ; Russel & Benzing 1981 ; Benzing & Russel 1981 ; Lindsay & Chaikin 1982). 
In fact it is quite common to see the ‘shimmering’ of the Bragg-scattered light from 
a flashlight illuminating a vial of colloidal crystals as a result of long-wavelength 
transverse distortions excited by external vibrations. In order to get a clear unified 
picture of the dynamical responses of such systems, i t  is necessary to study the role 
of the solvent-mediated hydrodynamic interactions. 

From the solution to the time-dependent Navier-Stokes equation for an incom- 
pressible fluid in which a lattice of spheres performs arbitrary small motions, we will 
show in $2 that the strong damping of longitudinal modes for all wavelengths is due 
to backflow imposed by ‘extended’ or ‘closed’ boundary conditions such as those 
provided by a wall or the infinite surface area of neighbouring spheres far from a given 
sphere in an unbounded lattice. Transverse modes, on the other hand, require no 
backflow (in the absence of walls) in the centre-of-mass frame, and therefore 
experience a vanishing friction in the limit of long wavelengths, since there is no 
relative motion between the particles and the fluid. 

In order to illustrate exactly what it is we wish to calculate, we first consider a 
simple harmonic lattice model for a colloidal crystal (Hurd 1981 ; Hurd et al. 1981). 
While the elastic lattice case may be of limited general interest, it  is a good vehicle 
for introducing the basic concepts and nomenclature of lattice dynamics from 
solid-state theory, which are invaluable in discussing the problem of hydrodynamic 
flow around a lattice. Therefore we begin with a lattice of spheres interacting directly 
through pair potentials and indirectly through the hydrodynamic flow. The equation 
of motion for the nth sphere can be written as 
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where x,  is the displacement of sphere n from its equilibrium site, X, is an external 
force acting on sphere n, u,, is the force tensor and w,, is the dissipation tensor. 
The external force is present only to provide a (formal) force to drive the oscillatory 
motions that we wish to study. In a physical situation i t  may be a random force, 
gravity, or any other force acting only on the particles. The tensor u,, gives the 
force by direct interactions on sphere n for a unit displacement of sphere m, whereas 
w,, relates the hydrodynamic force on sphere n produced by movement of sphere m. 
After a normal-modes transformation, x,  = X, a, exp [iq R,], we get 

a, = - D, ap A, a, + X,, (2) 

where D, is the Fourier transform of the potential tensor u,, and A, is the Fourier 
transform of the dissipation tensor w,, : 

D = m-1 x u eiq ’ (Rn-Ri), 
I 0  ni 

A = m-lx  w eiq*(Rn-R>). 
g o  nl 

D, is known in solid-state theory as the dynamical matrix ; it  contains the information 
concerning undamped normal-mode frequencies for the system. By analogy, we will 
call A, the ‘dissipation matrix’ since it contains the information concerning damping 
of the normal modes, including the friction factors that we seek. 

After final diagonalization (the simultaneous diagonalization of D, and A,)? and 
a time Fourier transform, the equations of motion become completely decoupled into 
three modes (one longitudinal and two transverse), the vth mode obeying a simple, 
forced-harmonic-oscillator equation 

a;[ - u2 + ( w ; ) ~  - i d ; ]  = Xi, (3) 

where ( w ; ) ~ ,  the uth eigenvalue of D,, represents the undamped frequency, and A;, 
the vth eigenvalue of A,, is the damping or friction factor for the oscillator. In  the 
usual lattice dynamics of solids, the undamped frequency ui, considered as a function 
of q, is the phonon dispersion relation giving the frequency (or energy) of a lattice 
vibration as a function of wavelength of the disturbance in the particle displacements. 
It will become apparent that, owing to the hydrodynamic interaction, the friction 
factor has dispersion, i.e. it is a function of q, and that it is complex, the imaginary 
part representing fluid inertia. 

From (l) ,  the fluid drag force acting on the nth particle is -Em w,,k,. By 
action-reaction, the fluid experiences equal and opposite forces at the particle sites, 
each of which can be decomposed into a set of independent contributions from each 
normal mode. In  $2 we find the relation between these normal-mode contributions 
and the particle velocities ; the proportionality constants are the friction factors A;. 
Section 3 deals with the effects of unsteady flow and how the effective mass of the 

t Final diagonalization is a simple rotation of axes to decouple the spatial components of the 
normal modes. The simultaneous diagonalization of D, and A, by a rotation matrix is possible only 
if D, and A, commute and at least one of them is positive definite (see Noble 1969). The dissipation 
matrix is positive definite since its quadratic form is just one-half the dissipated energy, but 
commutativity does not seem to be guaranteed for general directions of the wave vector q. For 
the special high-symmetry directions of q considered here, however, commutativity holds. One could 
argue further that, within the context of a linearized theory with only pair interactions, no mode 
coupling can exist; there can be no coupling between longitudinal and transverse flows. For 
arbitrary directions of q there are no purely longitudinal or transverse modes; nevertheless there 
must be three uncoupled modes. 
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coupled sphere-fluid modes is increased by fluid inertia. These effects are further 
discussed for an elastic lattice, such as a colloidal crystal, in $4. Finally, in $5,  the 
qualitative effects of walls are determined by considering a one-dimensional chain 
of beads on a lattice near a wall with Oseen interactions. The main result of this 
section is that the extended boundary conditions of the wall impose a backflow that 
suppresses propagating modes in the chain. In a similar way, propagating modes in 
a three-dimensional colloidal crystal would be suppressed in sample cells smaller than 
a critical wavelength, consistent with recent data (Hurd 1981 ; Hurd et al. 1982). 

2. Lattice hydrodynamics 
First it is necessary to calculate the fluid velocity flowing around a dilute lattice 

of identical particles that are performing small-amplitude motions about their lattice 
sites. Rotational motions and their coupling to translations are neglected for 
simplicity; also, since they involve higher moments of the forces induced by the 
spheres on the fluid, they result in corrections of a higher order in volume fraction 
(Happel & Brenner 1973). The solution requires only a reasonable modification of 
Hasimoto’s (1959) calculation for a sedimenting perfect lattice, using the method of 
induced forces. Indeed, the result in this section can be viewed as a case with special 
symmetry of more general many -sphere calculations for arbitrary configurations 
using the induced-forces technique (Mazur 1982; van Saarloos & Mazur 1983). The 
general procedure is to calculate the force on a representative sphere in the lattice 
by replacing all the others by forces acting on the fluid, where each force is acting in 
a way appropriate for the modes present (that is, each sphere exerts a force that is 
the superposition of forces for each normal-mode disturbance in the lattice), then to 
satisfy the boundary conditions on the representative sphere. The finite sizes of the 
other spheres can be neglected since they introduce a correction of order 4, and we 
are interested in a theory of order &. Hence we assume point forces on the fluid. 
Also, the point forces are assumed to act precisely at the lattice sites, ignoring the 
finite displacements of the particles. This approximation is also consistent with a 
harmonic lattice theory. 

As a point of reference, we know that the friction factor Hasimoto obtained for 
a body-centred cubic lattice sedimenting in the [lo01 direction (normal to a face of 
a bcc cubic unit cell) is the asymptotic value we should find for a [lo01 longitudinal 
mode as the wavelength increases to infinity. That value is 

Atloo = Ao[l - 1.792@+0($)]-’, (4) 

where A, = 6 q a / m 0 ,  4 is the volume fraction of spheres and mo the mass of a sphere. 
The unsteady Stokes equation for an incompressible fluid under the action of forces 

F is 
-pb = V p - 7 V 2 ~ -  F, ( 5 )  

along with 
v * v  = 0, 

and, for this problem, stick boundary conditions on the surface of each sphere. 

the well-known equation 
By eliminating the pressure and solving for u using Fourier transforms, we obtain 
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where ki = -iwp/q. The last result is the fundamental solution for arbitrary forces 
acting on the fluid. 

In  reality, the induced forces Fac t  on the spherical shells of the fluid that contact 
the particles' surfaces. Saffman (1973) has shown that these forces may be replaced 
by their monopole moments, with an error of order 9. With this approximation, the 
forces on the fluids are 

wherefn(t) is the point force per unit mass exerted by the nth sphere at its lattice 
site R,. We assume that the force exerted by sphere n can be formally decomposed 
into normal-mode contributions, 

so that the Fourier transform of the body forces F is 

F (k, 0 )  = ( 2 1 ~ ) ~ m ~  SZ-lZfq(~)E P(k-  (K, +q) ) .  (10) 

Here SZ is the volume of a space lattice unit cell, the set {K,} is the set of reciprocal 
lattice vectors (which make up the spatial Fourier transform of the direct lattice) and 
the following formula has been used : 

9 m 

( 2 W  E e--i(k-q) ' R n  = T C  &a(k - (K, + 4)). 
n m 

Owing to the lattice periodicity, the normal-mode wave vector q may be considered 
to be confined to  the Wigner-Seitz unit cell of the reciprocal lattice, the so-called first 
Brillouin zone, without loss of information. The Brillouin zone around a lattice site 
is defined as all of the points in reciprocal space that are closer to that site than any 
other lattice site. Each site is therefore enclosed by a polyhedral box formed by planes 
midway between other reciprocal lattice sites. A mode whose wave vector q extends 
beyond the zone boundary to the mth reciprocal lattice unit cell is equivalent to a 
mode whose wave vector is q-K,, which lies in the first Brillouin zone, because the 
factor exp (iq*Rn) repeats as q extends beyond the first zone boundary. 

Substituting thelast expression into (7) and transforming to the ( r ,  w)-representation 
gives 

where K' = K+q.  This is the solution for the fluid velocity induced by point forces 
on a perturbed lattice. Certain higher-order spatial derivatives of (7) are also 
solutions, but these enter. at higher order in 9. 

By action-reaction, the induced body forcesf, act back on the particles as drag 
forces. Substituting the nth particle velocity x, = C uq exp (iq*Rn) into the total drag 
force -Z w,, km, and equating each normal-mode component to -fq, we find 

Meanwhile, the fluid boundary condition at the nth sphere's surface is satisfied 
(consistent to the degree of approximation at hand) by equating the particle velocity 
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Direction Q 
[lo01 0.0 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .00 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .oo 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 

P101 0.00 

e 
1.792 
1.789 
1.780 
1.765 
1.744 
1.716 
1.682 
1.641 
1.594 
1.541 
1.483 
1.421 
1.356 
1.290 
1.225 
1.165 
1.110 
1.065 
1.031 
1.009 
1.002 
1.792 
1.791 
1.787 
1.781 
1.772 
1.760 
1.746 
1.729 
1.709 
1.687 
1.661 
1.632 
1.601 
1.567 
1.530 
1.491 
1.450 
1.407 
1.364 
1.321 
1.278 

1.792 
1.791 
1.788 
1.783 
1.776 
1.767 
1.757 
1.744 
1.730 
1.714 
1.697 
1.678 

G” 
O.OO0 
O.OO0 
O.OO0 
0.OOO 
0.OOO 
0.OOO 
0.000 
O.OO0 
O.OO0 
O.OO0 
0.OOO 
O.OO0 
0.OOO 
0.OOO 
O.OO0 
O.OO0 
0.OOO 
O.OO0 
0.OOO 
0. OOO 
0.OOO 
O.OO0 
0.000 
0.000 
0.001 
0.001 
0.001 
0.001 
0.000 

-0.002 
-0.006 
-0.012 
-0.020 
-0.030 
-0.043 
-0.059 
-0.078 
-0.100 
-0.125 
-0.152 
-0.180 
-0.209 

0.OOO 
O.OO0 
O.OO0 
0.001 
0.002 
0.004 
0.006 
0.008 
0.012 
0.017 
0.023 
0.030 

Icy 
1.792 
1.791 
1.788 
1.783 
1.776 
1.768 
1.759 
1.748 
1.736 
1.724 
1.711 
1.697 
1.683 
1.667 
1.650 
1.630 
1.608 
1.582 
1.552 
1.515 
1.472 
1.792 
1.791 
1.787 
1.781 
1.772 
1.760 
1.746 
1.729 
1.709 
1.687 
1.661 
1.632 
1.601 
1.567 
1.530 
1.491 
1.450 
1.407 
1.364 
1.321 
1.278 

1.792 
1.791 
1.788 
1.783 
1.776 
1.767 
1.757 
1.744 
1.730 
1.714 
1.697 
1.678 

e 
1.792 
1.791 
1.788 
1.783 
1.776 
1.768 
1.759 
1.748 
1.736 
1.724 
1.711 
1.697 
1.683 
1.667 
1.650 
1.630 
1.608 
1.582 
1.552 
1.515 
1.472 
1.792 
1.791 
1.787 
1.781 
1.772 
1.760 
1.746 
1.729 
1.709 
1.687 
1.661 
1.632 
1.601 
1.567 
1.530 
1.491 
1.450 
1.407 
1.364 
1.321 
1.278 

1.792 
1.791 
1.790 
1.787 
1.783 
1.778 
1.772 
1.763 
1.752 
1.739 
1.724 
1.705 

TABLE 1. (con.!. onfacing page). 
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TABLE 1.  ( cud . )  

Direction Q 
[I 101 0.60 

0.65 
0.70 
0.85 
0.80 
0.85 
0.90 
0.95 
1 .OO 

e 
1.657 
1.634 
1.609 
1.582 
1.553 
1.521 
1.486 
1.447 
1.403 

G" 
0.040 
0.054 
0.066 
0.084 
0.105 
0.131 
0.162 
0.198 
0.241 

K i Y  

1.657 
1.634 
1.609 
1.582 
1.553 
1.521 
1.486 
1.447 
1.403 

e 
1.682 
1.654 
1.622 
1.583 
1.538 
1.485 
1.422 
1.348 
1.262 

TABLE 1. Lattice sum Gfl for q in three directions in a bec lattice. The quantity Q is the value of 
q expressed aa a fraction of the zone-boundary wave vector for [loo] and [110], and as a fraction 
of twice the zone boundary wave vector for [ 11 11. The symmetry points are labelled according to 
the standard scheme. 

Direction a, B U p  U p  U p  U p  

5, 2 1.7921 -0.0350 -0.7452 -1.6889 
2, Y O.oo00 O . o o 0 0  O.oo00 O .oo00  
Y. Y 1.7908 0.0507 -0.8017 1 .w40 
2, z 1.7908 0.0507 -0.8017 1.0940 

[1101 5, 5 1.7912 0.0261 -0.5778 0.4264 
5, Y 0.0003 -0.0107 0.1196 -0.1633 
Y? Y 1.7912 0.0261 -0.5778 0.4264 
2, z 1.7912 0.0255 -0.3719 0.3820 

v111  5, 5 1.7926 -0.0300 -0.2761 -0.5523 
5, Y 0.0013 -0.0527 0.4193 -0.8857 
Y9 Y 1.7926 -0.0300 -0.2761 -0.5523 
z, z 1.7026 -0.0300 -0.2761 -0.5523 

TABLE 2. Coefficients for polynomial approximations to Gfl using 
Gfl = utfl + uffl Q + ugfl Qa + u:fl Qa + uzfl &4 

U p  

1.6812 
O.ooO0 

-0.6607 
-0.6607 

-0.2622 

-0.2622 
-0.5642 

0.3436 
0.3075 
0.3436 
0.3436 

0.2948 

with the surface average of the fluid velocity over a sphere centred at the lattice site 
with the particle's radius a, k, = ( ~ ( 1 ,  w)) , ,  yielding 

We note that the act of surface averaging renders exp (iXm*r) real, since only the 
even part (cosine) survives the integration over the surface of a sphere. On comparing 
(12) and (13), the dissipation matrix can be immediately identified as the inverse of 
the lattice sum : 
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It is convenient at  this stage to isolate the fluid inertial (imaginary) part of A;', 
which will be discussed in $3, from the dissipative (real) part. Also, with the m = 0 
term written separately, the dissipative part takes the form Re (A;') = S, + Y,, where 

and 

Note that Y, contributes only to transverse modes and that in these modes it 
dominates S, at small q. We will see later that Y, is responsible for decreasing the 
friction to transverse motions, allowing them to propagate in a lattice with elastic 
restoring forces. 

Now, if w2 Q w:#,  where wo = q/pa2, then kt can be ignored in (15) ,  so that the 
lattice sum can be reduced by the Ewald technique (Hasimoto 1959)  to the following 
form to lowest order in $: 

where Gb contains rapidly convergent sums : 

Sy = h,'(Pfi-Kyq9), (17) 

+ Z [(zKI,)" ( Z K I , ) ~ G ~ ( ( Z K I , ~ ~ ) - ~ O B G ~ ( ~ Z K ~ ~ ~ ) ] .  (18) 
m 9 0  

Here z = (8x)-:f%, Gv(z)  is the incomplete gamma function, 

Gv(x)  = wv ePxW dw, 

and r(n,  x) is the complementary incomplete gamma function. The physical significance 
of the quantities K, can be seen from (17) .  The friction factors that we wish to obtain 
are the eigenvalues of (S,+ Y,)-', which for a longitudinal mode will look some- 
thing like A, = A,( 1 - K, &-'. Thus the elements of K, are wavelength-dependent co- 
efficients of the correction to Stokes' law owing to backflow in finite concentrations : 
a larger K, indicates a larger friction and a stronger backflow. 

We have calculated Gfl for q extending along the [ 1001, [ 1101 and [ 11 11 directions 
in a bcc (space) lattice for 20 points in the Brillouin zone; the results are shown in 
table 1. Actually, the [ 11 13 sum was carried beyond the Brillouin-zone boundary by 
following an edge between unit cells adjacent to the first zone. Special labels are 
commonly used for points of special symmetry in the reciprocal lattice: for a 
face-centred cubic cell (which is reciprocal to bcc) r is used for the centre of the zone 
and P, N and H for the most-remote points along the [ 11 13, [110] and [lo01 directions 
respectively. 

In  order to simplify calculations, each of the tabulations of <b have been 
approximated by a fourth-order polynomial; the coefficients are shown in table 2. 
The polynomial expressions are merely convenient contractions of table 1, suitable 
for interpolation and accurate to better than 0 . 1  %. Otherwise, the interpolation 
coefficients have little physical significance. 

r 
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3e Zone 

edge 

Wave vector q 

0 o + o . - o  -0 0 
Longitudinal 

0 

0 

0 

b 

0 

6 6  
tbt 

0 

6 
b 
0 

0 
Transverse 

FIGURE 1. (a) Friction factors for phononlike modes in a dilute bce lattice for various simple 
directions and polarizations: (1 )  [lo01 longitudinal, (2) [110] longitudinal, (3) [Il l]  longitudinal, 
(4) [lo01 transverse, (5) [I101 transverse-polarized along [001], (6) [110] transverse-polarized along 
[ l l O ] ,  (7) [ 1 1 11 transverse. The two transverse modes for [ 1001 and for [ l l l ]  are degenerate. Contrast 
the dramatic decrease in friction for transverse modes, which have no backflow, with the increase 
in friction a8 the result of badrflow effects for longitudinal modes as the wave vector decreases. 
The friction dispersion curves are plotted from the centre of the Brillouin zone to the zone edge 
for [lo01 and [110] (curves 1 ,  5, and 6), and for [ l l l ]  beyond the zone edge symmetry point P, 
which occurs halfway along the abscissa, to the symmetry point H. (Sphere volume fraction 
q5 = 0.001.) (b) Schematic of modes along [loo]. The first shows the relative displacements of 
spheres in a longitudinal mode, corresponding to curve (1) in (a), and the second shows the 
displacements in a transverse mode polarized in the [Ool] direction, corresponding to curve (4). 
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Using (16), (17) and table 1, the inverse dissipation matrix in (14) may be 
constructed. It may then be inverted and the eigenvalues found in order to obtain 
the friction factors. In  the [lo01 direction, for example, we find 

qloo = h0[l-qq5t]-’, 

where the friction factors for the longitudinal and transverse modes are A t  and A: 
respectively. There are two transverse modes, which remain mutually degenerate 
throughout the zone and also become degenerate with the longitudinal mode at  the 
symmetry point H as expected. One may verify that at  q = 0 the longitudinal mode 
friction is identical with Hasirnoto’s value in (4). This is the correct result for steady 
sedimentation in which there are no inertial (finite-frequency) effects. 

Figure 1 shows the dispersion of several friction factors through the zone for a 
volume fraction of q5 = 0.001. Note the dramatic decrease in the friction for 
transverse modes as the wavelength increases. The backflow effect for longitudinal 
modes shows up as a maximum in the friction near the zone centre (infinite 
wavelength), at which in each of the three directions shown the longitudinal-mode 
friction factors have the same value. A t  the zone boundary, however, where 
neighbouring spheres move in opposition, the lattice is less isotropic : compressional 
waves along [110] experience a greater friction than along [loo] or [l l l] .  

3. Fluidinertia 
Returning to (14), the fluid inertia can now be discussed. The imaginary part of 

the lattice sum A;’ separates as the real part does into a purely transverse part Y;l 
and the rest of the sum Sk, yielding 

We expect Yq to dominate the inertial part for small q just as Yq dominates the 
dissipative part of A;’. We will show that this leads to a higher effective mass for 
long-wavelength transverse modes as a result of the mass of solvent that gets carried 
along with the particles. There is a less significant, yet finite, additional mass for 
longitudinal modes. 

For ( 2 3 ~ ) ~  4 1, Sk is negligible compared with Yi, so that the imaginary part of the 
transverse-mode friction takes the simple form (in the [ 1001 direction, for example) 

= Ao(&-~q5-i(zko)2 32n = -io+;’, 

where 6, is the ratio of the mass ofa sphere to that of a unit cell of fluid. Substitution 
into (3) reveals that the fluid-inertia term has the same o-dependence as the 
particle-inertia term and that the original quasistatic problem can be recovered by 
replacing the particle mass m, by 

mo+mo(l +q5;’) = m,+mf, (24) 

where m, is the fluid mass per unit cell. Thus, a t  sufficiently long wavelengths, the 
effective mass of the mode is the entire mass of a unit cell, including both the fluid 
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and the sphere. This is not unexpected, since the fluid and particles move synchronously 
in these modes. 

Similarly, by expanding (21) for small q5 using the Ewald technique, one can show 
that for longitudinal modes the imaginary eigenvalues analogous to (23) are of order 
- iwq5;i for all q. The longitudinal effective mass is therefore of order m, q5;i, which, 
although small compared with the transverse-mode mass, is much larger than m,, 
showing that part of the fluid mass in a unit cell is accelerated along with the spheres 
in a longitudinal mode, the rest participating in the backflow. 

Finally, the single oscillating sphere limit can be recovered from the results in §2 
if care is taken in proceeding to the limit of an infinite lattice parameter. The discrete 
lattice sums are not well configured to obtain finite frequency results in the continuum 
limit, since the expansion parameter k, = ( - i o p / q ) f  cannot be considered small in 
comparison with any characteristic wave vectors of the lattice aa R, + 00. Instead, 
it is better to return to (14) and convert the summation over discrete wave vectors 
(for a long-wavelength longitudinal mode (q = 0)) to an integral. (The long-wavelength 
limit for transverse modes is a linear shear of the lattice, or, in the continuum limit, 
a single particle in a linear shear field.) The result is 

L 
sphere = - k~ a + * * * I-’, 

which is correct in its leading term (Mazur & Bedeaux 1974). Higher-order corrections 
in frequency can be obtained only by treating the volume of the fluid displaced by 
the particles more carefully than is done in the point-force method. 

4. Elastic lattice 
The importance of hydrodynamic interactions between spheres that interact 

directly by other means is best appreciated by examining the dispersion relations for 
elastic lattice vibrations. As a physical example, we have in mind colloidal crystals, 
the particles of which interact electrostatically forming a visco-elastic lattice whose 
dispersion relations can be measured directly by light scattering. The interactions 
between neighbouring particles in a colloidal crystal are of order kT, which implies 
that the separations are only a few Debye lengths. The equivalent hard-sphere 
diameter for thermodynamic purposes implies that the lattice is electrostatically 
concentrated, while hydrodynamically it can remain dilute. 

Let us continue discussion of the [loo] transverse mode in a bcc lattice. From (3), 
(20) and (23), one obtains the complex amplitude of the mode relative to the driving 
force as 

In  the acoustic (long-wavelength) regime for the purely elastic lattice, the mode’s 
frequency is proportional to the wave vector oz = (k1/3m,)a R, q = $4 Vq, with k, the 
effective spring constant between nearest-neighbour spheres and V = (k1/3m,)f R, the 
velocity of sound. Equation (25) exhibits the same power spectrum as the shear waves 
in colloidal crystals considered by Joanny (1979). This can be seen by examining the 
complex poles oi of the above expression. With a little algebra, one finds that the 
poles must satisfy the dispersion relation 

which is Joanny’s result. 
14 i ~ s d  153 
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A more useful way to analyse (25) is through the Fourier transform of the power 
spectrum, because it yields a correlation function that can be measured directly by 
light scattering (Hurd 1981; Hurd et al. 1982). A heterodyne experiment at a 
scattering wave vector k, nearer a particular reciprocal lattice vector K than any 
other, measures the time autocorrelation function of the amplitude of the qth normal 
mode, (a,*(O) a,(t)>, where q is a reduced wave vector defmed by q = k- K. It is of 
the form exp (iw, t ) ,  and the poles are given by 

w* = i(+A:) {I [I - (2w:/Ai)a]i}. 
Thus the autocorrelation function, which is the Fourier transform of the power 
spectrum in (25), has an overdamped, exponentially decaying, form for A: < 2wi, and 
an underdamped, decaying oscillation for A: > 2wG. In  transverse modes of an infinite 
lattice, the latter condition is guaranteed to occur at sufficiently small q since A: 
approaches the zone centre quadratically with q (e.g. (20)), whereas w: is linear with 
q, being in the acoustic regime. For the [loo] mode in a colloihl crystal, the critical 
wavelength at which this happens is q; l=  7/2pV x 30 pm. (Here we have used 
k, = dyn cm-’ and R, = 1.5 pm from Hurd et al. (1982). Note the error in (32) 
of Hurd et al., which should read V = !ju, R, @i.) Only those transverse modes whose 
wavelengths are longer than q;l can be expected to show the oscillatory signature 
of propagation. It is therefore difficult to observe this pheEomenon in thin-film 
samples of the type often used for colloidal-crystal studies. In fact, owing to wall 
effects discussed in $4, sample vessels much larger than qi l  must be used to see 
propagating thermal modes, since in the presence of walls the transverse mode friction 
is not necessarily small for any q. 

5. Wall effects 
In  this section we will analyse the backflow imposed by a single wall on the 

oscillatory motions of a one-dimensional array of spheres in order to understand 
better the effects of thin-film sample cells. Hydrodynamic wall effects have been a 
point of recent interest for sedimentation problems (Goren 1983 ; Beenakker & Mazur 
1984). The backflow imposed by a wall is not the same as the backflow discussed in 
$2, which was a result of upstream pressure gradients, but the two are related in the 
sense that both effects are the consequence of ‘extended’ or ‘closed’ boundary 
conditions. (In an infinite array, the particle surfaces constitute a boundary condition 
of infinite extent, much the same as a wall). The effect of a wall can be readily 
calculated to first order by the method of reflections using Lorentz’s Reciprocal 
Theorem (Happel & Brenner 1973) : given any velocity field v = ( u ,  v, w) and pressure 
p that satisfy Stokes’ equations, Lorentz showed that a new velocity field 
v” = (u”, v”, w”) and pressure p” can be obtained from the mirror-image, reflected in 
the wall, v’ and p‘, of the given field by the formulas 
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Wave vector q 

FIGURE 2. Friction factor for one-dimensional lattice (a) in an unbounded fluid and (a) near a wall. 
In  the unbounded fluid, the drafting of one sphere behind another leads to a vanishing friction at 
long wavelengths, an unphysical result caused by the neglect of convective terms in the 
Navier-Stokes equations. In the presence of a wall, backflow imposed on the lattice caums a higher 
overall friction, and, more important, a non-vanishing value at q = 0. (Relative spacing a /R ,  = 0.1, 
relative distance a / L  = 0.4.) 

The new field also satisfies Stokes’ equations and exactly cancels v on a planar surface 
at z = 0. Hence v“ is the first reflected backflow field imposed by the stick boundary 
condition on the planar surface. 

One could apply these formulas to the three-dimensional lattice result (1 l), but 
a more revealing exercise is to apply them to a simpler one-dimensional lattice 
velocity field. This may be constructed from the Oseen tensor T in the point-force 
approximation : 

@ ( I )  = x T.a(,)fs,, (28) 
n. B 

where PI(,) is defined as (81cyr)-’ (Ffl+ro?T8/rz). Let the lattice run in the z-direction 
with a lattice parameter R, and sphere diameter a,  with only motion along z allowed. 
Without the wall, the Oseen tensor gives the unperturbed field 

which, after the application of approximate boundary conditions on the surfaces of 
the spheres and following the other procedures outlined in $2, gives the following 
friction factor : 

The sum can be performed exactly, revealing a logarithmic singularity at q = 0 
(Glasser 1974) : 

14-2 
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I 

Zone 

FIGURE 3. Geometry for one-dimensional lattice near a wall. Spheres of radius a are constrained 
to move longitudinally parallel to the wall in the direction 2 ,  always remaining at a distance L from 
the wall. 

This singularity corresponds to  a vanishing friction factor, seen in curve (a) of 
figure 2. The vanishing is a well-known result for the steady translation of an infinitely 
long rod along its axis in an unbounded fluid. For unsteady motion, inertial effects, 
which are neglected here, provide a finite resistance; thus in any physical situation 
no singularity can exist. Whatever the true friction factor, however, (31) suggests 

FIQURE 4. Schematic comparison of (a)  transverse friction factor A, for a lattice bounded by walls, 
which has a non-zero value at the zone centre, and (a) twice the elastic dispersion curve 2w,, showing 
a situation in which propagating behaviour occurs in some range [ql ,  qJ of non-zero wave vectors 
for which A, < Zw,. 
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that i t  is small, attributable to the lack of backflow and to the ‘drafting’ of one sphere 
behind another. Next we will see that the inclusion of backflow reflected from a wall 
leads to a dramatic increase in the friction. 

Let the lattice be at a distance L from a parallel wall at x = 0 (see figure 3). The 
mirror-image field o’ can be found from (31) by replacing 

T ~ ( L )  = (X + L)2 + y2 + (Z - nR,)’ 

with ri(-L). The z-component of the backflow from the nth moving particle 
evaluated at the centre of the particle at z is found from (27c) to be 

and the new friction factor is 

where s = 2L/R,. The +/L term is the well-known single-particle correction for 
motion parallel to a wall, and is the same for all normal modes. The more-interesting 
backflow correction term in the summand can be identified by comparing with (30). 
The previously divergent sum now converges at q = 0, where B = 2L/R,, producing 
curve (b) of figure 2. In this case the friction factor shows less dispersion (less 
q-dependence) in the presence of a wall, and remains finite even when the wall is far 
away from the spheres. 

The point of this exercise is that the friction for the shear modes of a colloidal 
crystal lattice confined to a thin cell will not vanish aa they do in an infinite lattice, 
because the presence of walls imposes backflow. This is not to say that propagating 
modes cannot exist in a confined sample; they will still occur for whatever range of 
q in which the friction factor is small enough, i.e. A; < 2w;. However, since wi 
vanishes at q = 0, shear modes can propagate only in some range of non-zero q. This 
point is expressed schematically in figure 4. 

6. Conclusions 
The central result we have presented is an explicit calculation of the drag or friction 

factors for small oscillatory motions of a dilute bcc lattice of spheres in a viscous 
solvent. The formalism is based on classical solid-state analysis (Fourier transforms 
and small displacements), and is correct for short wavelengths, where the discreteness 
of the lattice is important, as well as for long wavelengths. We find that the 
hydrodynamic interaction enters at order $4, making it more important in regular 
arrays than in disordered arrangements, and that the friction is a function of the 
normal-mode q. In longitudinal modes of an infinite lattice, backflow arises as a 
response to pressure gradients, causing the friction to remain finite for all q, whereas 
transverse modes in an infinite lattice have no backflow, leading to a vanishing 
friction at q = 0.t Also, in elastic lattices such as colloidal crystals, the friction is small 
enough for propagating modes (sound waves) to exist at small wave vectors; the 
effective mass for such modes is seen to include the fluid mass carried along by the 

t We wish to thank a referee for pointing out that the transverse-mode friction vanishes at q = 0 
only in the leading terms of order @; the next-higher-order terms of order # do not vanish 
(Zuzovsky, Adler & Brenner 1983). These authors note the interesting fact that in the q = 0 limit 
the results for random and ordered arrangements become identical. 
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particles. However, we have argued that in the presence of a wall, propagating modes, 
if they exist at all, will only occur in a range of wave vectors that does not include 
q = 0 because backflow imposed by the wall prevents the friction from vanishing. 
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